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The present article is the first part of a series devoted to extending the Repeat Space
Theory (RST) to apply to carbon nanotubes and related molecular networks. Four key
problems are formulated whose affirmative solutions imply the formation of the initial
investigative bridge between the research field of nanotubes and that of the additivity
and other network problems studied and solved by using the RST. All of these four
problems are solved affirmatively by using tools from the RST. The Piecewise Mono-
tone Lemmas (PMLs) are cornerstones of the proof of the Fukui conjecture concern-
ing the additivity problems of hydrocarbons. The solution of the fourth problem gives a
generalized analytical formula of the pi-electron energy band curves of nanotube (a, b),
with two new complex parameters c and d. These two parameters bring forth a broad
class of analytic curves to which the PMLs and associated theoretical devices apply.
Based on the above affirmative solutions of the problems, a central theorem in the
RST, called the asymptotic linearity theorem (ALT) has been applied to nanotubes and
monocyclic polyenes. Analytical formulae derived in this application of the ALT illumi-
nate in a new global context (i) the conductivity of nanotubes and (ii) the aromaticity of
monocyclic polyenes; moreover an analytical formula obtained by using the ALT pro-
vides a fresh insight into Hückel’s (4n + 2) rule. The present article forms a foundation
of the forthcoming articles in this series.
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tivity and network problems, ∗-algebra, the Fukui conjecture, carbon nanotubes, alge-
braic and analytic curves, resolution of singularities
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1. Introduction

The repeat space theory (RST) originated in the empirical analysis of ther-
modynamic and spectroscopic data on organic compounds. It initially concerned

∗The present series of articles is closely associated with the series of articles entitled ‘Proof of the
Fukui conjecture via resolution of singularities and related methods’ published in the JOMC.
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the correlation between structure and properties in molecules having many
identical moieties. In recent years, interacting with the theories of dynamical sys-
tems, operator algebra, and so forth, the RST has developed into a compre-
hensive theoretical framework of axiomatic nature (cf. [1–8]), which unites and
solves a variety of problems, in particular, of physicochemical networks in a new
global context.

By using a theoretical device from the RST, it can be demonstrated [9]
that the formula of the pi-electron energy band curves of carbon nanotubes
expounded in ref. [10] provides strikingly ample examples of the analytic curves
to which the Piecewise Monotone Lemmas (PMLs) can be applied. The PMLs
are cornerstones of the proof of the Fukui conjecture (concerning the additivity
problems of hydrocarbons) which continues to be of vital significance in the new
development of the generalized repeat space, and also in view of the new appli-
cations of resolution of singularities and the theory of algebraic and analytic
curves to physicochemical networks. (This conjecture was proved by the present
author [11–13] and has been further investigated in the series of papers entitled
‘Proof of the Fukui conjecture via resolution of singularities and related meth-
ods’ [14,15].)

The single-wall nanotubes treated in ref. [10] can be regarded as fused
benzene molecular networks in the form of cylinder. (Cf. [10,16,17] and references
therein, and cf. section 3 of the present paper for the representation of nanotubes
using abelian groups. Cf. also remarks 7.1 in section 7 on a comparative study
of toroidal carbon nanotubes and their linear counterparts.) Since the additivity
and other network problems of conjugated molecular networks including fused
benzenes have been well studied by means of the RST, it is natural to ask if the
RST is applicable to the research of carbon nanotubes and conversely if the lat-
ter can enhance the development of the RST, which now uses the theory of alge-
braic and analytic curves, and resolution of singularities.

After several steps of preparations, we formulate four key problems in
section 6. The first two problems concern the question of whether or not the
eigenvalue problem associated with nanotube(a, b) treated in ref. [10] can be
stated in the operator-theoretic setting of the RST, namely within the structure
of the ∗-algebra of the repeat space Xr (q, 1). The last two problems deal with
the question of whether it is possible to obtain a generalized analytic formula
of the pi-electron energy band curves of nanotube(a, b), with two new com-
plex parameters c and d. These two parameters bring forth a broader set of
analytic curves to which the PMLs and the associated theoretical devices are
applicable.

All of these four problems are affirmatively answered in section 7. These
solutions pave, for the first time, the investigative connection between the
research field of nanotubes and that of the additivity and other network prob-
lems studied and solved by using the RST.
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The crucial tools from the RST for the solutions of the key problems are:

(I) the notion called the standard alpha space with size (q, 1), denoted by
X#α(q, 1),

(II) the notion of a hyper-circulant, which is a far reaching generalization
of a circulant (cf. section 4), and its associated technique called the
plug-in block-diagonalization method, or the PB method for short.

Besides being able to indicate how to obtain the desired analytical formulae
of the general energy band curves, these and related tools from the RST can lead
one to get an insight, in a global context, into the reason why they are obtain-
able. Moreover, this insight naturally leads one to notice that in the repeat space
Xr (q, d) with any positive block-size number q and any positive dimension num-
ber d, there exists a broad class of analytically diagonalizable matrix sequences
that had been hitherto unknown.

In the RST, the asymptotic linearity theorems (ALTs) play a central role
in tackling a variety of additivity problems. In sections 8 and 9, based on the
above mentioned affirmative solutions of the problems, the functional version of
the ALT, which was proved in [2], has been applied for the first time to nanotu-
bes and monocyclic polyenes. Analytical formulae derived in this application of
the ALT illuminate in a global context (i) the conductivity of nanotubes and
(ii) the aromaticity of monocyclic polyenes; moreover proposition 9.1 in section
9, using the ALT, provides a fresh insight into Hückel’s (4n + 2) rule.

The new analytical formulae together with other theoretical tools and tech-
niques developed in the present article form a foundation for the forthcoming
parts of this series of articles, which is closely associated with the above men-
tioned series of articles [14,15] concerning the proof of the Fukui conjecture via
resolution of singularities.

We shall start the next section with introducing the basic symbols used in
the present article.

2. Definitions of symbols

Throughout, let Z
+, Z

+
0 , Z, R, and C, denote, respectively, the set of all

positive integers, nonnegative integers, integers, real numbers, and complex num-
bers. For each positive integer n, Mn(C) denotes the set of all n × n complex
matrices.

Let Arg: C →] − π, π ] denote the function defined by

Arg(z) =
{

0 if z = 0
θ if z ∈ C − {0}, (2.1)

where θ ∈ ] − π, π ] and
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z = |z| exp(iθ). (2.2)

(Note that for each z ∈ C − {0}, there is a unique θ ∈ ] − π, π ] such that (2.2)
holds.)

If S1 and S2 are subsets of C and z ∈ C, let

S1 + S2 := {r1 + r2 : r1 ∈ S1, r2 ∈ S2}, (2.3)

zS1 := {zr1 : r1 ∈ S1}. (2.4)

By ‘for all N � 0’, we mean ‘for all positive integers N greater than some
given positive integer’. Suppose that Prp(1), Prp(2), . . . is an infinite sequence of
propositions, then ‘Prp(N ) is true for all N �0’ if and only if there exists a pos-
itive integer N0 such that Prp(N ) is true for all N greater than N0. The phrase
‘for all N � 0’ conventionally reads ‘for all large enough N ’s’.

Let IN denote the N × N identity matrix. If M is an N × N complex matrix,
M0 denotes the N × N identity matrix IN , MT denotes the transposed matrix of
M , and M∗ denotes the adjoint matrix of M .

In what follows, we recall the definitions of matrices PN and SN which
played a fundamental role in constructing the notion of the generalized repeat
space (cf. ref. [4] and the appendix). The matrices PN and SN and related notions
are significant in investigating carbon nanotubes via the RST. From this theory,
we shall selectively recall only essential tools necessary for the purpose of this
paper.

For each N ∈ Z
+, PN denotes an N × N real-orthogonal matrix given by

PN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1 0

0
. . .

. . .
. . .

0 1
0 0 1

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.5)

In other words, PN is the N × N cyclic shift matrix with (PN )i j = 1 if j − i ≡ 1
mod N ; (PN )i j = 0 otherwise.

For each N ∈ Z
+, with j ∈ {−2, −3, . . .} is defined to be (P−1

N )− j , which
equals the transpose of P− j

N . Note that for each N ∈ Z
+, j, k ∈ Z, we have

P j
N Pk

N = P j+k
N , (2.6)

P N
N = P0

N , (2.7)

P N− j
N = P− j

N . (2.8)



S. Arimoto / Repeat space theory applied to nanotubes 235

For each N ∈ Z
+, let SN denote an N × N real matrix given by

SN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 0 0 0

0 0
. . .

. . .
. . .

. . .

. . . 0 0
0 0 0 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.9)

In other words, SN is the N × N matrix defined by (SN )i j = 1 if i = j = 1; (SN )i j = 0
otherwise. Note that (PN SN )i j = 1 if i = N and j = 1; (PN SN )i j = 0 otherwise.

If A is an m × m complex matrix and B is an n × n complex matrix, the
Kronecker product of the two matrices, denoted by A ⊗ B is defined as the par-
titioned matrix

A ⊗ B :=

⎛
⎜⎜⎜⎜⎜⎝

A11 B A12 B · · · · · · A1m B
A21 B A22 B · · · · · · A2m B

...
...

...
...

...
...

Am1 B Am2 B · · · · · · Amm B

⎞
⎟⎟⎟⎟⎟⎠ . (2.10)

A ⊗ B is a matrix of order (mn × mn). It has m2 blocks, the (i, j)th block is the
matrix Ai j B of order (n × n), thus it is often signified as A ⊗ B = [Ai j B]. The
following fundamental formulae for the Kronecker product are easily verifiable
(cf. e.g., [18,19]).

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), (2.11)

(k A) ⊗ B = A ⊗ (k B) = k(A ⊗ B), k ∈ C, (2.12)

A ⊗ (B + C) = A ⊗ B + A ⊗ C, (2.13)

(A + B) ⊗ C = A ⊗ C + B ⊗ C, (2.14)

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D), (2.15)

(A ⊗ B)T = AT ⊗ BT , (2.16)

(A ⊗ B)∗ = A∗ ⊗ B∗, (2.17)

where the orders of the matrices involved are such that all the operations are
well-defined.

Matrices L(N, n, t, x, y, z) and L̃(θ, n, t, x, y, z). Let r ∈ Z
+, let

x, y, z ∈ Mr (C) with x∗ = x . (2.18)
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Let N , n ∈ Z
+, and let t ∈ Z. Define the rnN × rnN Hermitian matrix

L(N , n, t, x, y, z) by

L(N , n, t, x, y, z) = P−t
N ⊗ C∗

n + P−1
N ⊗ B∗

n + P0
N ⊗ (An − C∗

n − Cn)

+P+1
N ⊗ Bn + P+t

N ⊗ Cn, (2.19)

where

An = P−1
n ⊗ y∗ + P0

n ⊗ x + P+1
n ⊗ y, (2.20)

Bn = P0
n ⊗ z, (2.21)

Cn = (Pn Sn) ⊗ y. (2.22)

Let θ ∈ R, define the rn × rn Hermitian matrix L̃(θ, n, t, x, y, z) by

L̃(θ, n, t, x, y, z) = (eiθ )−tC∗
n + (eiθ )−1 B∗

n + (eiθ )0(An − C∗
n − Cn)

+(eiθ )+1 Bn + (eiθ )+tCn. (2.23)

Matrices Mn,t,c,d
N and Fn,t,c,d(θ) defined below (by using the above matri-

ces L(N , n, t, x, y, z) and L̃(θ, n, t, x, y, z)) play a significant role in the present
article, they are going to be used in the formulation of problems in section 6.

Matrices Mn,t,c,d
N and Fn,t,c,d(θ). Let N , n ∈ Z

+, and let t ∈ Z. Let c, d ∈
C, and let

X :=
(

0 1
1 0

)
, Y (c) :=

(
0 0
c 0

)
, Z(d) :=

(
0 0
d 0

)
. (2.24)

Define the 2nN × 2nN Hermitian matrix Mn,t,c,d
N by

Mn,t,c,d
N := L(N , n, t, X, Y (c), Z(d)). (2.25)

Let Fn,t,c,d : R → Mq(C) denote the 2n × 2n Hermitian-matrix-valued function
defined by

Fn,t,c,d(θ) = L̃(θ, n, t, X, Y (c), Z(d)). (2.26)

3. Representation of nanotube(a, b) using abelian groups

There are several distinct ways of representing nanotube(a, b). We establish
here the method of using the complex plane, to which the hexagonal lattice – the
pattern of the graphite sheet, is associated, rotated, cut, and glued by means of
group theoretical techniques.

In the complex plane C, consider the regular hexagon with edges of the unit
length whose vertices are given by

z j = exp(i(π/2 + ( j − 1)π/3)), (3.1)
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where j = 1, . . . , 6. Let Ed(z j , z j+1) denote the edge from vertex z j to vertex
z j+1:

Ed(z j , z j+1) = {(1 − t)z j + t z j+1 : 0 � t � 1}, (3.2)

and let Ed0(z j , z j+1) denote the edge from vertex z j to vertex z j+1 with both
ends excluded:

Ed0(z j , z j+1) = {(1 − t)z j + t z j+1 : 0 < t < 1}, (3.3)

where j = 1, . . . , 6, and z7 = z1.
Let

u := z6 − z4 = √
3/2 + 3i/2, (3.4)

v := z2 − z4 = −√
3/2 + 3i/2. (3.5)

Put

G = C, (3.6)

and note that G forms an abelian group with the addition operation.
For a ∈ Z

+, b ∈ Z, N ∈ Z
+ ∪ {∞}, let

Ha,b
N :=

{
(au + bv)Z + (0u + Nv)Z if N ∈ Z

+,

(au + bv)Z + (0u + 0v)Z if N = ∞,
(3.7)

and let

H0 := H1,0
1 = uZ + vZ. (3.8)

Notice that the subset p1Z + p2Z forms a subgroup of G whenever p1 and p2
are in G. In fact, p1Z+ p2Z is the smallest subgroup that contains {p1, p2} ⊂ G,
in other words, p1Z+ p2Z is the subgroup of G generated by its subset {p1, p2}.
Thus, Ha,b

N is a subgroup of the abelian group G.
For each p ∈ G, let Tp : G → G denote the translation function defined by

Tp(z) = z + p. (3.9)

Let TG denote the abelian group of all the translations in G

TG = {Tp : p ∈ G}. (3.10)

If G0 is a subgroup of G, TG0 denotes the subgroup of TG defined by

TG0 := {Tp : p ∈ G0}. (3.11)

Note that TH0 is a subgroup of TG generated by the subset {Tu, Tv}.
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Let 2G denote the set of all subsets of G, and let Hex: Z × Z → 2G denote
the mapping defined by

Hex(ξ1, ξ2) := 6∪
j=1

Ed(z j , z j+1) + {uξ1 + vξ2}. (3.12)

Then the range Hex(Z × Z) of this mapping satisfies the following relation

Hex(Z × Z) = Hex(0, 0) + H0, (3.13)

it represents the hexagonal lattice in G that contains the set Hex(0, 0) and is
invariant under the translations of group TH0 . Note that each hexagon in the
hexagonal lattice Hex(Z × Z) is associated to the ordered pair (ξ1, ξ2) ∈ Z × Z.

Let

E1 := Ed0(z1, z2) + H0, (3.14)

E2 := Ed0(z2, z3) + H0, (3.15)

E3 := Ed0(z3, z4) + H0, (3.16)

E4 := G − (E1 ∪ E2 ∪ E3). (3.17)

It is easily seen that the sets E1, E2, E3, and E4 are pairwise disjoint and that
they are all invariant under the translations of group TH0 .

Let c, d ∈ R, and let f c,d : G → R be the function defined by

f c,d(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c if z ∈ E1,

1 if z ∈ E2,

d if z ∈ E3,

0 if z ∈ E4.

(3.18)

By the invariance of the sets E1, E2, E3, and E4 under the translations of group
TH0 , the following equality holds for all z ∈ G and T ∈ TH0 :

f c,d(T (z)) = f c,d(z). (3.19)

Definition 3.1. The notation being as above, let a ∈ Z
+, b ∈ Z, N ∈ Z

+ ∪ {∞}.
Define the equivalence relation ∼(a, b, N ) = ∼ on G by

z ∼ z′ ⇔ z − z′ ∈ Ha,b
N . (3.20)

Remarks 3.1. Since Ha,b
N is a subgroup of the abelian group G, it is a normal

(invariant) subgroup of G. Thus, we can consider the quotient group G/Ha,b
N .

The above equivalence relation is precisely the equivalence relation induced by
the cosets of the quotient group G/Ha,b

N .
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Definition 3.2. The notation being as above, let a ∈ Z
+, b ∈ Z, c, d ∈ R, N ∈

Z
+ ∪ {∞}. Let μ

a,b,c,d
N :G/∼ → R be the mapping defined by

μ
a,b,c,d
N ([z]) = f c,d(z), (3.21)

where G/∼ stands for the set of all the equivalence classes of G generated by
the equivalence relation ∼, and [z] stands for the equivalence class containing z.

Remarks 3.2. The mapping μ
a,b,c,d
N can be equivalently defined on the quotient

group G/Ha,b
N .

The fact that μ
a,b,c,d
N is well-defined easily follows from equation (3.19). We note

that μ
a,b,1,1∞ represents the nanotube(a, b) and that μ

a,b,1,1
N is the ‘N th approxi-

mation’ of μ
a,b,1,1∞ , which converges to μ

a,b,1,1∞ as N → ∞ in a certain precise
sense.

In this section, we have restricted the range of parameters c and d to R,
in order to keep a parallel between the notion of μ

a,b,1,1
N and its geometric pic-

ture obtained via the real-symmetric matrix representation of a labeled weighted
graph. In sections 2, 6, and 7, the range of parameters c and d is set to be the
complex field C.

4. Adjacency matrix K a,b,c,d
N associated with μ

a,b1,1
N , pseudo-circulant, and

hyper-circulant

This section is a direct continuation of section 3.
Recall (3.1) and the fact that z1 = i . Let

z′ := z1, (4.1)

z′′ := z1 + i, (4.2)

and let N , a ∈ Z
+. We define a finite sequence w1, w2, . . . , w2aN in G = C in two

steps. This sequence is the main ingredient of definition 4.1 given below. Defini-
tion 4.1 is going to be used in theorem 4.1 which is central in this section.

First, using the translation operator Tp with p ∈ G, for each j ∈ {1, . . . , a}
let

(w2 j−1, w2 j ) := (T( j−1)u(z′), T( j−1)u(z′′)), (4.3)

where u is given by (3.4).
Second, using w1, w2, . . . , w2a just defined above, for each k ∈ {1, . . . , N−1}

let

(w1+2ak, w2+2ak, . . . , w2a+2ak) := (Tkv(w1), Tkv(w2), . . . , Tkv(w2a)), (4.4)

where v is given by (3.5).
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Definition 4.1. The notation being as above, let

W := {[w1], [w2], . . . , [w2aN ]}, (4.5)

where [w j ] denotes the equivalence class containing w j . For each x, y ∈ W , let
d(x, y) denote the distance between the equivalence classes x and y:

d(x, y) := inf{|x ′ − y′| : x ′ ∈ x, y′ ∈ y}. (4.6)

Remarks 4.1. It can be easily shown that the inf in (4.6) can be replaced by
min and that W = (W, d) forms a metric space. One can define a metric d̂ on
the quotient group G/Ha,b

N similarly by considering the distance between cosets.
Then, W is regarded as a metric subspace of the metric space (G/Ha,b

N , d̂).

Theorem 4.1. The notation being as above, let a ∈ Z
+ with a � 2, b ∈ Z, c = d = 1,

and let N ∈ Z
+ with N � 2. Define the 2aN × 2aN matrix K a,b,c,d

N by

(K a,b,c,d
N )st =

{
1 if d([ws], [wt ]) = 1,

0 if d([ws], [wt ]) �= 1.
(4.7)

Then, we have

K a,b,c,d
N = L(N , a, −b, X, Y (c), Z(d)). (4.8)

The matrix K a,b,c,d
N in theorem 4.1 can be regarded as the adjacency matrix

of the molecular graph Grapha,b1,1
N associated with μ

a,b1,1
N . The molecular graph

Grapha,b1,1
N has 2aN labeled vertices W = {[w1], [w2], . . . , [w2aN ]} and the edges

which reflect the adjacency relation defined by the criteria

d([ws], [wt ]) = 1. (4.9)

One can geometrically visualize Grapha,b1,1
N by first rolling up the sheet of hexa-

gons described by (3.13) so that Hex(0,0) is superimposed with Hex(a, b), and
second by making the desired torus structure (that has N cyclic repetitions) out
of the cylinder that has infinite translational repetitions.

Theorem 4.1 can be easily generalized to include the case in which a or N
(or both) is equal to 1. In the present paper, however, we do not discuss this gen-
eralization since the new setting of the theory given in the next section does not
require this extension.

It is convenient to introduce, at this moment, the following notions of
an (m, n) pseudo-circulant, an (m, n) hyper-circulant, and an (m, n) block-
diagonalizable matrix. The circulants and pseudo-circulants have been frequently
used in the theories of hydrocarbons, polymers, and crystals (cf. [20,21]). Here,
we shall newly establish the notion of an (m, n) hyper-circulant, which is a far
reaching generalization of a circulant and a pseudo-circulant.
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Definition 4.2. An mn × mn complex matrix A is called an (m, n) pseudo-circulant
if there exist Q1, Q2, . . . , Qm ∈ Mn(C) such that

A =

⎛
⎜⎜⎜⎜⎜⎝

Qm Q1 Q2 . . . Qm−1
Qm−1 Qm Q1 . . . Qm−2
Qm−2 Qm−1 Qm . . . Qm−3

...
...

...

Q1 Q2 . . . . . . Qm

⎞
⎟⎟⎟⎟⎟⎠ , (4.10)

i.e., such that A can be expressed in terms of the jth power of the cyclic shift
matrix Pm and the Kronecker product as follows

A =
m∑

j=1

P j
m ⊗ Q j . (4.11)

An mn × mn complex matrix A is called an (m, n) hyper-circulant if there
exist P ∈ Mm(C), Q1, Q2, . . . , Qm ∈ Mn(C) such that P is semi-simple (diago-
nalizable) and such that

A =
m∑

j=1

P j ⊗ Q j . (4.12)

An mn × mn complex matrix A is called an (m, n) block-diagonalizable
matrix if there exist U ∈ Mmn(C), B1, B2, . . . , Bm ∈ Mn(C) such that U is non-
singular and such that

U−1 AU = B-diag(B1, B2, . . . , Bm), (4.13)

where B-diag(B1, B2, . . . , Bm) denotes the mn × mn block-diagonal matrix in
which the ( j, j)th block is B j and the ( j, k)th block is the n × n zero matrix
whenever j �= k.

The following theorem provides the relation between (m, n) pseudo-circu-
lants, (m, n) hyper-circulants, and (m, n) block-diagonalizable matrices. This theo-
rem gives a guideline for solving problems (III) and (IV) formulated in section 6.

Theorem 4.2. Let m, n ∈ Z
+. The following statements are true.

(i) If A is an (m, n) pseudo-circulant, then A is an (m, n) hyper-circulant.

(ii) If A is an (m, n) hyper-circulant, then A is an (m, n) block-diagonalizable
matrix.
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Proof. (i) The statement is true because the cyclic shift matrix Pm is unitary
and hence semi-simple.

(ii) Assume that A is an (m, n) hyper-circulant. Then, there exist P ∈
Mm(C), Q1, Q2, . . . , Qm ∈ Mn(C) such that P is semi-simple and such that

A =
m∑

j=1

P j ⊗ Q j . (4.14)

Since P is semi-simple, there exists a nonsingular matrix V ∈ Mm(C) and a diag-
onal matrix D ∈ Mm(C) such that

V −1 PV = D. (4.15)

By inserting P = V DV −1 into (4.14), we have

A =
m∑

j=1

(V DV −1) j ⊗ (In Q j In)

=
m∑

j=1

(V D j V −1) ⊗ (In Q j In)

=
m∑

j=1

(V ⊗ In)(D j ⊗ Q j )(V −1 ⊗ In)

= (V ⊗ In)

⎛
⎝ m∑

j=1

D j ⊗ Q j

⎞
⎠ (V −1 ⊗ In). (4.16)

Bearing in mind the fact that (V ⊗ In)
−1 = (V −1 ⊗ In), we see that

(V ⊗ In)
−1 A(V ⊗ In) =

m∑
j=1

D j ⊗ Q j

= B-diag

⎛
⎝ m∑

j=1

D j
11 Q j ,

m∑
j=1

D j
22 Q j , . . . ,

m∑
j=1

D j
mm Q j

⎞
⎠.(4.17)

Therefore, A is (m, n) block-diagonizable.

Definition 4.3. The procedure of block-diagonalization used in the proof of
theorem 4.2 is referred to as the Plug-in Block-diagonalization method for hyper-
circulants, or the PB method, for short.
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Now we are ready to provide the

Proof of theorem 4.1. Put

n = a. (4.18)

First, consider the case where b = 0. It is not difficult to check that K n,0,c,d
N

is an (N , 2n) pseudo-circulant of order (2nN × 2nN ) given by

K n,0,c,d
N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

An Bn B∗
n

B∗
n An Bn

B∗
n An Bn

B∗
n • •

• • •
• • Bn

• An Bn
Bn B∗

n An

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P−1
N ⊗ B∗

n + P0
N ⊗ An + P+1

N ⊗ Bn, (4.19)

where An and Bn are 2n × 2n matrices given by

An = P−1
n ⊗ Y (c)∗ + P0

n ⊗ X + P+1
n ⊗ Y (c), (4.20)

Bn = P0
n ⊗ Z(d). (4.21)

Notice also that An and Bn are (n, 2) pseudo-circulants.
Second, consider the matrix K n,b,c,d

N − K n,0,c,d
N and notice that it has the

following (N , 2n) pseudo-circulant form:

K n,b,c,d
N − K n,0,c,d

N = Pb
N ⊗ C∗

n + P0
N ⊗ (−C∗

n − Cn) + P−b
N ⊗ Cn, (4.22)

where

Cn = (Pn Sn) ⊗ Y (c). (4.23)

The conclusion follows.
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Remarks 4.2. In equation (4.22), set N = 8, b = 1, for example, then K n,b,c,d
N −

K n,0,c,d
N has the following (N , 2n) pseudo-circulant form:

K n,b,c,d
N − K n,0,c,d

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dn C∗
n Cn

Cn Dn C∗
n

Cn Dn C∗
n

Cn Dn C∗
n

Cn Dn C∗
n

Cn Dn C∗
n

Cn Dn C∗
n

C∗
n Cn Dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.24)

where Dn := −C∗
n − Cn.

In the following sections, due to the notational convenience in using the
RST, we frequently put n = a and t = −b, where a and b are variables in
the symbol nanotube (a, b). Notice that the block-matrix pattern in (4.24) with
respect to the adjoint operation becomes the same as that of the block-matrix
(4.19) if we consider K n,−b,c,d

N − K n,0,c,d
N instead of K n,b,c,d

N − K n,0,c,d
N .

5. Standard alpha space X#α(q, 1)

The standard alpha space X#α(q, 1) plays a major role in the present arti-
cle. It is a special and important subset of the generalized repeat space Xr (q, d)

which was defined in [4] for the first time.
Fix any q ∈ Z

+, let {MN } = M1, M2, . . . be an infinite sequence of matrices
whose N th term is a q N ×q N complex matrix. Suppose that there exist v ∈ Z

+
0 ,

Q−v, Q−v+1, . . . , Qv ∈ Mq(C) such that for each N ∈ Z
+,

MN =
v∑

j=−v

P j
N ⊗ Q j . (5.1)

Then, {MN } is called a standard alpha sequence with size (q, 1). The set of all
the standard alpha sequences is referred to as the standard alpha space with size
(q, 1) and denoted by X#α(q, 1).

If {MN } ∈ X#α(q, 1), then for any N ∈ Z
+, MN is an (N , q) pseudo-circ-

ulant, which can be easily demonstrated by using the fact that P j
N = Pk

N if
j ≡ k (mod N ) and by recalling fundamental formulae for the Kronecker prod-
uct, (2.12) and (2.13).

Let F : R → Mq(C) be the q × q complex matrix-valued function defined by

F(θ) =
v∑

j=−v

(exp(i jθ))Q j . (5.2)
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Then, F is called the FS map associated with the standard alpha sequence {MN }.
(Note that F has the form of a finite Fourier series.)

If MN is Hermitian for all N ∈ Z
+, then we have

Q− j = Q∗
j (5.3)

for all j ∈ {0, 1, . . . , v}, and it follows that F(θ) defined by (5.2) is Hermitian
for all θ ∈ R.

6. Formulation of problems

The eigenvalue problem of nanotube(a, b) in the Hückel crystal orbital
scheme is equivalent to the eigenvalue problem of the Hermitian matrix-valued
FS map Fa,−b,1,1 in the RST. In ref. [10], all the eigenvalues associated with this
eigenvalue problem of nanotube (a, b) with 0 � b < a were given explicitly in a
closed analytical form (cf. [10] and references therein). Thus, we see that all the
eigenvalues of Fa,−b,1,1(θ) are explicitly obtainable if 0 � b < a and θ ∈ R. (Cf.
remarks given below.)

Before formulating the problems, a few remarks must be made. We use the
term ‘generalized repeat space’ in the formulation of problems (I) and (II) given
below. At this moment however, it is not necessary for the reader to closely
review the definition of this notion, which is given in the appendix. The gen-
eralized repeat space Xr (q, d) with block-size number q and dimension num-
ber d can be considered as a generalized analogue of the standard alpha space
X#α(q, 1) defined in section 5. Problems (I) and (II) concern the question of
whether or not the sequences {Ma,−b,c,d

N }N∈Z+ and {Fn,−b,c,d(θ)}n∈Z+ fall into a
category of sequences which is central to and well-investigated in the RST.

Problems . Let a ∈ Z
+, let b ∈ Z, let c, d ∈ C, and let θ ∈ R. Recall matrices

Mn,t,c,d
N and Fn,t,c,d(θ) defined by (2.25) and (2.26), respectively.

(I) Is the sequence {Ma,−b,c,d
N }N∈Z+ an element of a generalized repeat

space?

(II) Is the sequence {Fn,−b,c,d(θ)}n∈Z+ an element of a generalized repeat
space?

(III) Given an N ∈ Z
+, are all the eigenvalues of the matrix Ma,−b,c,d

N
explicitly obtainable?

(IV) Given a θ ∈ R, are all the eigenvalues of the matrix Fa,−b,c,d(θ) explic-
itly obtainable?

If these questions are answered affirmatively, then a new investigative link
is formed, for the first time, between the research field of nanotubes and that
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of the additivity, boundary effect, and other network problems, which had been
investigated and solved using the RST. In this case, the mutual importation of
theoretical notions and tools beyond the traditional research boundary becomes
possible.

In section 7, we give affirmative answers to all of problems (I), (II), (III),
and (IV).

Remarks 6.1. (1) If c1 and c2 are real numbers, and if L is an Hermitian
matrix, then the eigenvalues of the Hermitian matrix c1L0 + c2L are
given by c1 + c2λ j (L) where λ j (L) denotes the jth eigenvalue of L.

(2) If H is the Hückel matrix of a conjugated molecule with the Coulomb
integral α and the resonance integral β and if A is the adjacency matrix
of the labeled graph of this molecule, then we have: H = αA0 + β A.

(3) The variable θ in the FS map is standard in the RST and this θ corre-
sponds to a constant times the wave number vector k in ref. [10]; it has
nothing to do with the conformational angle θ indicating the direction
of the hexagon (a, b) in the graphite sheet defined in ref. [10].

7. Key theorems for the solutions of the problems

In this section, we establish key theorems 7.1, 7.2, 7.3, and 7.4 for the solu-
tions of the problems formulated in section 6.

Theorem 7.1. The notation being as in section 2, we have

(I) The sequence {Ma,−b,c,d
N }N∈Z+ is an element of the generalized repeat

space with size (2a, 1).

(II) The sequence {Fn,−b,c,d(θ)}n∈Z+ is an element of the generalized repeat
space with size (2, 1).

Proof. (I) By the definition of Ma,−b,c,d
N , we easily see that

{Ma,−b,c,d
N }N∈Z+ ∈ X#α(2a, 1). (7.1)

By using equations (A.12), (A.13), and (A.14) in the appendix (review of
the generalized repeat space), we get the relation

X#α(2a, 1) ⊂ Xα(2a, 1) ⊂ Xα(2a, 1) + Xβ(2a, 1) = Xr (2a, 1), (7.2)

so that we have

{Ma,−b,c,d
N }N∈Z+ ∈ Xr (2a, 1). (7.3)
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(II) Let

An := P−1
n ⊗ Y (c)∗ + P0

n ⊗ X + P+1
n ⊗ Y (c), (7.4)

Bn := P0
n ⊗ Z(d), (7.5)

Cn := (Pn Sn) ⊗ Y (c), (7.6)

where X, Y (c), and Z(d) are given by (2.24). By using equations (A.12),
(A.13), and (A.14) in the appendix, we can easily see that

{An}, {Bn}, {Cn} ∈ Xr (2, 1). (7.7)

On the other hand, by the definition of Fn,−b,c,d(θ), we have

Fn,−b,c,d(θ) = (eiθ )−tC∗
n + (eiθ )−1 B∗

n + (eiθ )0(An − C∗
n − Cn)

+ (eiθ )+1 Bn + (eiθ )+t Cn. (7.8)

Theorem A.1 in the appendix implies that Xr (2, 1) is closed under the
addition, multiplication, scalar multiplication, and ∗ operations. There-
fore,

{Fn,−b,c,d(θ)}n∈Z+ ∈ Xr (2, 1). (7.9)

Theorem 7.2. Let q ∈ Z
+, let {AN } ∈ X#α(q, 1) be a standard alpha sequence

with size (q, 1). Suppose that AN is Hermitian for all N ∈ Z
+. Let F be the FS

map associated with the sequence {AN }. Let h j (θ) denote the jth eigenvalue of
the Hermitian matrix F(θ) counted with multiplicity, arranged in the increasing
order (1 � j � q). Then, for each N ∈ Z

+, the following statements are true:

(i) AN can be block-diagonalized as follows:

(UN ⊗ Iq)−1 AN (UN ⊗ Iq)

= B-diag(F(2π/N ), F(2π2/N ), . . ., F(2π N/N )), (7.10)

where UN denotes the N × N unitary matrix whose elements are

(UN )mn = N−1/2 exp(2πmni/N ), (7.11)

Iq denotes the q × q identity matrix.

(ii) The eigenvalues of q N × q N Hermitian matrix AN counted with mul-
tiplicity are:

h1(2π1/N ), . . . , h1(2π N/N ), . . . , hq(2π1/N ), . . . , hq(2π N/N ). (7.12)



248 S. Arimoto / Repeat space theory applied to nanotubes

(iii) For all θ ∈ R, we have

F(θ + 2π) = F(θ). (7.13)

(iv) If Q−v, Q−v+1, . . ., Qv are all real matrices, then for all θ ∈ R we have

F(−θ) = F(θ)T , (7.14)

F(π − θ) = F(π + θ)T , (7.15)

det(λIq − F(−θ)) = det(λIq − F(θ)), (7.16)

det(λIq − F(π − θ)) = det(λIq − F(π + θ)). (7.17)

Proof. (i) By using the fundamental properties of the Kronecker product and
the elementary equality for the diagonalization of PN :

U−1
N PN UN = diag(exp(2π i/N ), exp(2π2i/N ), . . ., exp(2π Ni/N ))

= DN , (7.18)

equality (7.10) can be easily verified. In fact, by inserting PN =
UN DN U−1

N into AN =
v∑

j=−v

P j
N ⊗ Q j , one obtains

AN =
v∑

j=−v

(UN DN U−1
N ) j ⊗ (Iq Qn Iq)

= (UN ⊗ Iq)

⎛
⎝ v∑

j=−v

D j
N ⊗ Qn

⎞
⎠ (U−1

N ⊗ Iq), (7.19)

from which (7.10) follows immediately.

(ii) This easily follows from (i).

(iii) Evident from the definition of F .

(iv) Assume that Q−v, Q−v+1, . . . , Qv are all real matrices, and observe
that

F(θ) =
v∑

j=−v

(exp(−i jθ))Q− j =
v∑

j=−v

(exp(−i jθ))QT
j

=
⎛
⎝ v∑

j=−v

(exp(−i jθ))Q j

⎞
⎠

T

= F(−θ)T , (7.20)



S. Arimoto / Repeat space theory applied to nanotubes 249

and that

F(π − θ) = F(−π + θ)T = F(π + θ)T . (7.21)

The last two equalities in (iv) can be easily demonstrated by the fact
that the determinant of matrix M is equal to the determinant of MT .

Theorem 7.3. Recall the notation introduced in section 2 (definition of symbols),
and set

q = rn, (7.22)

AN = L(N , n, t, x, y, z), (7.23)

F(θ) = L̃(θ, n, t, x, y, z). (7.24)

Let h j (θ) denote the jth eigenvalue of the Hermitian matrix F(θ) counted with
multiplicity, arranged in the increasing order (1 � j � q). Then, for each N ∈ Z

+,
the eigenvalues of q N × q N Hermitian matrix AN counted with multiplicity are:

h1(2π1/N ), . . . , h1(2π N/N ), . . . , hq(2π1/N ), . . . , hq(2π N/N ). (7.25)

Proof. Note that {AN } ∈ X#α(q, 1) and that F is the FS map associated with
the sequence {AN }. The conclusion immediately follows from theorem 7.2.

Definition 7.1. For each n ∈ Z
+, let Sgn : {1, . . ., 2n} → {−1, 1} denote the func-

tion defined by

Sgn( j) =
{

1 if j ∈ {1, . . . , n},
−1 if j ∈ {n + 1, . . ., 2n}. (7.26)

Theorem 7.4. The notation being as above, let n ∈ Z
+, let t ∈ Z, let c, d ∈ C,

and let θ ∈ R. Let

ρ := ρ(d, θ) = 1 + d∗ exp(−iθ). (7.27)

Then, for 1 � j � 2n, the eigenvalue λ
n,t,c,d
j (θ) of the 2n × 2n Hermitian matrix

Fn,t,c,d(θ) is given by

λ
n,t,c,d
j (θ) = Sgn( j)

√
|c|2 + |ρ|2 + 2Re

(
cρ exp

(
i

(
tθ + 2π j

n

)))

= Sgn( j)

√
|c|2 + |ρ|2 + 2 |c| |ρ| cos

(
Arg(c) + Arg(ρ) + θ t + 2π j

n

)
.

(7.28)
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Proof. Let

ε := ε(t, θ) = exp(i tθ). (7.29)

Let n ∈ Z
+, let P̂n denote the n × n unitary matrix defined by P̂n = ε if n = 1, and

P̂n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1 0

0
. . .

. . .
. . .

0 1
0 0 1

ε 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.30)

if n � 2. Then, the characteristic equation of P̂n is given by

ln − ε = 0, (7.31)

so that the eigenvalues l j of P̂n are given by

l j = exp
(

i

(
tθ + 2π j

n

))
, (7.32)

j ∈ {1, . . ., n}. Let

D̂n := diag(l1, . . ., ln), (7.33)

and let Ûn denote a unitary matrix such that

Û−1
n P̂nÛn = D̂n. (7.34)

We mimic the argument in the proof of theorem 7.2(i), and express the 2n×
2n Hermitian matrix Fn,t,c,d(θ) in terms of c, ρ, and P̂n as follows

Fn,t,c,d(θ) =
1∑

k=−1

P̂k
n ⊗ Q̂k, (7.35)

where

Q̂−1 =
(

0 c∗

0 0

)
, Q̂0 =

(
0 ρ

ρ∗ 0

)
, Q̂1 =

(
0 0

c 0

)
. (7.36)
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Now inserting P̂n = Ûn D̂nÛ−1
n into equality (7.35), one obtains

Fn,t,c,d(θ) =
1∑

k=−1

(Ûn D̂nÛ−1
n )k ⊗ (I2 Q̂k I2)

= (Ûn ⊗ I2)

⎛
⎝ 1∑

k=−1

D̂k
n ⊗ Q̂k

⎞
⎠ (Û−1

n ⊗ I2). (7.37)

Thus, Fn,t,c,d(θ) can be block-diagonalized as follows:

(Ûn ⊗ I2)
−1 Fn,t,c,d(θ)(Ûn ⊗ I2)

= B-diag

⎛
⎝ 1∑

k=−1

lk
1 Q̂k,

1∑
k=−1

lk
2 Q̂k, . . .,

1∑
k=−1

lk
n Q̂k

⎞
⎠ . (7.38)

By solving the characteristic equation of the jth diagonal block

det

⎛
⎝λI2 −

1∑
k=−1

lk
j Q̂k

⎞
⎠ = λ2 − (ρ + c∗l−1

j )(ρ∗ + cl j ) = 0, (7.39)

we see that the eigenvalues of Fn,t,c,d(θ) are given by

±
√

|c|2 + |ρ|2 + 2Re(cρl j )

= ±
√

|c|2 + |ρ|2 + 2Re
(

cρ exp
(

i

(
tθ + 2π j

n

)))

= ±
√

|c|2 + |ρ|2 + 2Re
(

|c| exp(iArg(c)) |ρ| exp(iArg(ρ)) exp
(

i

(
tθ + 2π j

n

)))
. (7.40)

j ∈ {1, . . ., n}. From this the conclusion follows.

Now we can summarize the Solutions of problems (I), (II), (III), and (IV).
Problems (I), (II), (III), and (IV) formulated in section 6 have been all affirma-
tively solved by theorems 7.1, 7.2, 7.3, and 7.4: Problems (I) and (II) were solved
by theorem 7.1. By theorem 7.3, the solution of problem (III) was reduced to
that of problem (IV); one obtains the solution of problem (III) by combining
theorems 7.3 and 7.4. Problem (IV) was solved by theorem 7.4.

As indicated earlier, the affirmative solutions of problems (I) and (II) form
a new investigative link between the RST and the research field of nanotubes.
Let us now utilize basic tools of the RST to see the reason why problems (III)
and (IV) can be affirmatively solved. Since problem (III) can be reduced to prob-
lem (IV), we shall focus to problem (IV).

First, note that if b = 0, then we have

(i) {Fn,−b,c,d(θ)}n∈Z+ ∈ X#α(2, 1) ⊂ Xr (2, 1).
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(ii) Fn,−b,c,d(θ) is an (n, 2) pseudo-circulant for all n ∈ Z
+.

(iii) Fn,−b,c,d(θ) is an (n, 2) block-diagonalizable matrix for all n ∈ Z
+.

Thus, if b = 0, by recalling (7.18) we can immediately see that all the eigenvalues
of Fn,−b,c,d(θ) are explicitly obtainable by solving n quadratic equations.

Given any integer b, let us examine the property of the sequence
{Fn,−b,c,d(θ)}n∈Z+ more closely than in the proof of theorem 7.1(II). Taking the
nth power of both sides of (7.34), we obtain the relation

P̂n
n = ε In, (7.41)

hence

P̂0
n = (1/ε)P̂n

n , (7.42)

P̂−1
n = (1/ε)P̂n−1

n . (7.43)

Recalling formula (2.12) for the Kronecker product, and using (7.35), (7.42) and
(7.43), we then have

Fn,t,c,d(θ) = P̂n ⊗ Q̂1 + P̂n−1
n ⊗ ((1/ε)Q̂−1) + P̂n

n ⊗ ((1/ε)Q̂0). (7.44)

This implies that Fn,t,c,d(θ) is an (n, 2) hyper-circulant with the semi-simple
matrix P̂n that satisfies (7.34).

It is easy to show that (7.38) and hence the conclusion of theorem 7.4 can also be
obtained by strictly following the PB method described in definition 4.2. In fact, the
method of the block-diagonalization employed in the proofs of theorems 7.2 and 7.4
is essentially the same as the PB method. The former method is an efficient variant
of the PB method.

Thus, if b is any integer, then we have

(I) {Fn,−b,c,d(θ)}n∈Z+ ∈ Xr (2, 1).

(II) Fn,−b,c,d(θ) is an (n, 2) hyper-circulant with the semi-simple matrix P̂n
whose eigenvalues are analytically obtainable for all n ∈ Z

+.

(III) Fn,−b,c,d(θ) is an (n, 2) block-diagonalizable matrix for all n ∈ Z
+,

admitting the PB method and its variant method.

Consequently, in the general case in which b is any integer, we can also see
the reason why all the eigenvalues of Fn,−b,c,d(θ) are explicitly obtainable. The
classes of matrix sequences X#α(2, 1) and Xr (2, 1) together with the notions of
pseudo-circulants and hyper-circulants provide one with a comprehensive insight
into the reason why problem (IV) can be solved affirmatively. Moreover, this
insight naturally leads one to notice that in the repeat space Xr (q, d) with any
positive block-size q and any positive dimension d, there exists a broad class of
analytically diagonalizable matrix sequences that had been hitherto unknown.
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Remarks 7.1. Since Xr (2, 1) forms a ∗-algebra (cf. the appendix, theorem A.1),
{Fn,−b,c,d(θ)2}n∈Z+ ∈ Xr (2, 1). The eigenvalue problems of matrices Fn,−b,c,d(θ)

and Fn,−b,c,d(θ)2 can be simultaneously solved by using basic tools from the RST
and theorem 2 from [22], which is a powerful tool for dealing with the prob-
lems of ‘spectral symmetry’ [23–28]. It has been confirmed that the formula (7.28)
obtained in theorem 7.4 perfectly agrees with the formula obtained via the above-
mentioned theorem of spectral symmetry. This theorem was initially established
for the asymptotic analysis of a chemical kinetic dynamical system having a cyclic
structure [22,27–29].

An ideal I of an algebra A is a nonempty subset of A that is both a linear
subspace when A is considered as a linear space and an ideal when A is consid-
ered as a ring. For each (q, d) ∈ Z

+ × Z
+, the set Xβ(q, d) defined by (A.11)

in the appendix forms an ideal of the algebra Xr (q, d). For the proof of the fact
that Xβ(q, d) is a two-sided ideal of Xr (q, d), see ref. [6]. The ideal Xβ(q, d)

plays an important role in comparative studies of cyclic molecular networks hav-
ing repeating identical moieties and their linear counterparts. We remark that
the pseudo-circulant matrix sequence {Ma,−b,c,d

N }N∈Z+ in our theorem 7.1 can be
used for a comparative study of toroidal carbon nanotubes (nanotori) and their
linear counterparts when we consider the ideal Xβ(2a, 1). See [30–34] and refer-
ences therein for recent studies of toroidal carbon nanotubes.

8. Application of the functional asymptotic linearity theorem to carbon
nanotubes

In the repeat space theory (RST), the asymptotic linearity theorems (ALTs)
play a central role in tackling a variety of additivity problems. The reader
is referred to ref. [2] for various versions of the ALTs that prove the Fukui
conjecture and solve the molecular additivity problems in a unifying manner.
(For the methodology and examples of numerical analysis and computations
of asymptotic quantities of alternant hydrocarbons, cf. [35,36] and references
therein. For the definition of the original repeat space Xr (q) with block-size q,
cf. [2] and references therein.)

In this section, we provide the first application of the Functional ALT (the
functional version of the ALT, proved in [2]) to carbon nanotubes. We formu-
late a problem, called ‘problem γ ’, which involves a linear functional defined
by using the assertion of the Functional ALT. A solution of problem γ shall
be given at the end of this section after preparing essential preliminaries for the
solution.

Fix any positive integer n, and fix any integer t . Let {MN } ∈ X#α(2n, 1) be
such that

MN = L(N , n, t, X, Y (1), Z(1)) (8.1)
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for all N ∈ Z
+, where L is given by (2.19); X, Y (1), and Z(1) are given by (2.24).

Then, MN is real-symmetric for all N ∈ Z
+, and the sequence {MN } is an ele-

ment of the original repeat space Xr (2n) with block-size 2n. Fix a closed inter-
val I on the real line such that I contains all the eigenvalues of MN for all N ∈
Z

+. Let AC(I ) denote the normed space of all real-valued absolutely continuous
functions on I equipped with the norm given by

||ϕ|| = sup{|ϕ(t)| : t ∈ I } + VI (ϕ), (8.2)

where VI (ϕ) denotes the total variation of function ϕ. Let AC(I )∗ denote the
dual space of AC(I ), in other words, let AC(I )∗ denote the real linear space of
all the bounded linear functionals on AC(I ). Let EN : AC(I ) → R denote the
sequence of bounded linear functionals defined by

EN (ϕ) := Trϕ(MN ), (8.3)

N ∈ Z
+. [Cf. [2,5–8] for the definition of the ‘function’ of matrices ϕ(MN ).

Note that Trϕ(MN ) = ∑2nN
j=1 ϕ(λ j (MN )), where λ j (MN ) denotes the jth eigen-

value of the real-symmetric matrix MN counted with multiplicity, arranged in the
increasing order.]

Then, the Functional ALT implies that there exist linear functionals α, β ∈
AC(I )∗ such that

EN (ϕ) = α(ϕ)N + β(ϕ) + o(1) (8.4)

as N → ∞, for all ϕ ∈ AC(I ).
Define the sequence of linear functionals γN : AC(I ) → R by

γN (ϕ) = (EN (ϕ) − (α(ϕ)N + β(ϕ)))N , (8.5)

N ∈ Z
+. [Note that the Functional ALT implies that γN ∈ AC(I )∗ for every

N ∈ Z
+ and that γN (ϕ) = o(N ) as N → ∞, for all ϕ ∈ AC(I ).]

For each nonnegative real number ξ , let ϕξ ∈ AC(I ) denote the function
defined by

ϕξ (x) = |x |ξ . (8.6)

Then, the real number sequence {EN (ϕ1)}, N ∈ Z
+, gives the sequence of

the total pi-electron energy (TPEE) of the ‘pseudo-circulant representation’ of
nanotube (n, −t) with cluster size N . The real number sequence {EN (ϕ1 − ϕ0)},
N ∈ Z

+, gives the sequence of the delocalization energy (DE) of the ‘pseudo-
circulant representation’ of nanotube (n, −t) with cluster size N . [Note that
EN (ϕ) = α(ϕ)N +β(ϕ)+o(1) as N → ∞, for all ϕ ∈ span{ϕξ : ξ � 0} ⊂ AC(I ).]

Since

EN (ϕ0) = 2nN (8.7)
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for all N ∈ Z
+, we see that

α(ϕ0) = 2n, (8.8)

β(ϕ0) = 0, (8.9)

hence that

γN (ϕ0) = 0 (8.10)

for all N ∈ Z
+. By the linearity of the functional γN , we then have

γN (ϕ1 − ϕ0) = γN (ϕ1) (8.11)

for all N ∈ Z
+.

Let G : R → R denote the function defined by

G(θ) := Trϕ1(F(θ)), (8.12)

where F denotes the FS map associated with the sequence {MN }, i.e.,

F(θ) = L̃(θ, n, t, X, Y (1), Z(1)), (8.13)

and where L̃ is given by (2.23).
We are now ready to state problem γ .

Problem γ . Keep the notation and the assumptions as above. Describe the behav-
ior of the real number sequence {γN (ϕ1)}, which is equal to {γN (ϕ1 −ϕ0)}, in the
following two cases:

Case 1 : n + t ∈ 3Z, (8.14)

Case 2 : n + t /∈ 3Z. (8.15)

[Note: If one puts a = n and b = −t , then n + t ∈ 3Z if and only if 2a + b ∈ 3Z.
In ref. [10] and some other related references therein, the symbols a and b and
the condition 2a + b ∈ 3Z are used to discuss the conductivity of nanotubes. As
mentioned earlier, here we use the variables n and t , which are more convenient
in applying the RST to nanotubes.]

Preparation for answering problem γ . By the fundamental property of the FS
map and by the fact that the matrices MN are all real-symmetric, we know that
G : R → R is a function that satisfies the following conditions

G(θ + 2π) = G(θ), (8.16)

G(−θ) = G(θ), (8.17)

for all θ ∈ R, which implies that

G(π − θ) = G(π + θ) (8.18)

for all θ ∈ R.
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Let D−G(θ) and D+G(θ) denote, respectively, the derivatives on the left
and on the right at θ ∈ R:

D−G(θ) := lim
h→−0

G(θ + h) − G(θ)

h
, (8.19)

D+G(θ) := lim
h→+0

G(θ + h) − G(θ)

h
, (8.20)

and let

δ−(n, t) := D−G

(
2π

3

)
= −D+G

(
4π

3

)
, (8.21)

δ+(n, t) := D+G

(
2π

3

)
= −D−G

(
4π

3

)
. (8.22)

It is easy to show that for every θ ∈ R, both D+G(θ) and D+G(θ) exist in R.
The following essential preliminaries given in (i)–(iv) form a basis for our

solution of problem γ .
(i) In case 1, the function G is real-analytic thus differentiable everywhere

except on the set

S := {−2π/3, +2π/3} + 2πZ. (8.23)

This can be demonstrated by directly computing δ−(n, t) and δ+(n, t) (see (8.28)
and (8.29) below) and by noticing the fact that the function G is expressed in
terms of the square root function and real-analytic functions h1, . . . , hn : R →
R as follows: G(θ) = ∑n

j=1 2
√

h j (θ), where h j (θ) is strictly positive for all θ ∈
R − S and j ∈ {1, . . . , n}.

Let

y0 := 0, (8.24)

y1 := nu − tv, (8.25)

y2 := v, (8.26)

y3 := u, (8.27)

where u and v are complex numbers defined by (3.4) and (3.5) respectively. Let
ω denote the angle between the vectors −−→y0y1 and −−→y0y2 measured from the vector−−→y0y1. [Remarks: If one puts a = n and b = −t , then y1 = au + bv. Let Θ denote
the angle between the vectors −−→y0y3 and −−→y0y1 measured from the vector −−→y0y3, then
we have ω + Θ = π/3. In ref. [10] and some other related references therein, Θ

is called the conformation angle.]
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On the set S, the function G has cusps and the following equalities hold

δ−(n, t) = −2

√(
t

n

)2

− t

n
+ 1 − √

3 cot
( π

2n

)
, (8.28)

δ+(n, t) = +2

√(
t

n

)2

− t

n
+ 1 − √

3 cot
( π

2n

)
, (8.29)

√(
t

n

)2

− t

n
+ 1 =

√
3

2 sin ω
. (8.30)

(ii) In case 2, G is real-analytic thus differentiable everywhere.
(iii) In this section, we assume the validity of the following statement,

hypothesis I.

Hypothesis I. The notation and the assumptions being as above, we have for
each j = 0, 1, and 2,

γ3m+ j (ϕ1) → 2π
B2( j/3)

2!
∫ 2π

0
G(2)(θ) dθ (8.31)

as m → ∞.

For the proof of this hypothesis, one needs a special technique of asymp-
totic analysis, which is beyond the scope of this section. Here, we proceed taking
this hypothesis for granted. See (9.17) in section 9, which is similar to (8.31) but
is easy to prove.

Let B2 denote the second Bernoulli function defined by

B2(x) = x2 − x + 1/6. (8.32)

Then, in case 1, by using hypothesis I and the obvious relation∫ 2π

0
G(2)(θ) dθ = 2(δ−(n, t) − δ+(n, t)), (8.33)

we have

γ3m+0(ϕ1) → 2π B2(0/3)(δ−(n, t) − δ+(n, t)), (8.34)

γ3m+1(ϕ1) → 2π B2(1/3)(δ−(n, t) − δ+(n, t)), (8.35)

γ3m+2(ϕ1) → 2π B2(2/3)(δ−(n, t) − δ+(n, t)), (8.36)

as m → ∞.
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(iv) In case 2, we easily verify that

δ−(n, t) − δ+(n, t) = 0, (8.37)

and that

γN (ϕ1) → 0 (8.38)

as N → ∞.
Define the oscillation of γN (ϕ1) by

Os(γN (ϕ1)) := lim
N→∞ γN (ϕ1) − lim

N→∞
γN (ϕ1). (8.39)

With the above preparation we can now state the
Answer to problem γ .

In case 1, the sequence γN (ϕ1) is divergent and

γ3m+0(ϕ1) → −8π B2(0/3)

√(
t

n

)2

− t

n
+ 1, (8.40)

γ3m+1(ϕ1) → −8π B2(1/3)

√(
t

n

)2

− t

n
+ 1, (8.41)

γ3m+2(ϕ1) → −8π B2(2/3)

√(
t

n

)2

− t

n
+ 1, (8.42)

as m → ∞. Since B2(0/3) = 1/6, and B2(1/3) = B2(2/3) = −1/18, we have

lim
m→∞ γ3m+1(ϕ1) = lim

m→∞ γ3m+2(ϕ1), (8.43)

and we also have

Os(γN (ϕ1)) = 16π

9

√(
t

n

)2

− t

n
+ 1

= 8
√

3π

9 sin ω
. (8.44)

In case 2,

γN (ϕ1) → 0 (8.45)

as N → ∞, and hence

Os(γN (ϕ1)) = 0. (8.46)
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We remark that the above analytical solution of problem γ has special
physicochemical implications and prototypal importance in applying the RST
to carbon nanotubes and related molecular networks, the detailed argument of
which shall be published elsewhere.

To visualize the answer to problem γ and the asymptotic linearity of the
sequence EN (ϕ1), suppose that

n = 3, (8.47)

t = −3, (8.48)

so that n + t = 0 ∈ 3Z, and let

c0 := lim
m→∞ γ3m+0(ϕ1), (8.49)

c1,2 := lim
m→∞ γ3m+1(ϕ1) = lim

m→∞ γ3m+2(ϕ1), (8.50)

Os := Os(γN (ϕ1)). (8.51)

Then, we have √(
t

n

)2

− t

n
+ 1 = √

3, (8.52)

ω = π/6, (8.53)

so that

c0 = −8π(1/6)
√

3, (8.54)

c1,2 = −8π(−1/18)
√

3, (8.55)

Os = 16
√

3π

9
. (8.56)

Let us observe the results of the numerical computations given in figures 1 and 2,
before proceeding to the next section.
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Figure 1. The plot of the sequence GammaN := γN (ϕ1) = γN (ϕ1 − ϕ0) and the theoretically
obtained limits of the subsequences: c0 := limm→∞ γ3m+0(ϕ1) and c1,2 := limm→∞ γ3m+1(ϕ1) =
limm→∞ γ3m+2(ϕ1). The upper horizontal (dotted) line represents c1,2 and the lower horizontal
(dotted) line represents c0. The oscillation of the sequence γN (ϕ1) is the distance between these two
lines, which is 16

√
3π/9.
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Figure 2. The plot of the TPEE EnergyN := EN (ϕ1) of the pseudo-circulant representation of
nanotube(3, 3) with cluster size N . The stars ∗ represent the numerically computed EN (ϕ1) and
the line to which the point PtN := (N , EN (ϕ1)) ∈ R

2 rapidly approaches is the asymptotic line
α(ϕ1)N + β(ϕ1) which the Functional ALT predicts in a broader context.
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9. Application of the functional asymptotic linearity theorem to monocyclic
polyenes

In this section, we present the first application of the Functional ALT to
the monocyclic conjugated polyenes C2N H2N , N ∈ {2, 3, . . .}, whose Hückel adja-
cency matrix is given by setting c = 0 and d = 1 in (2.24) and by using our
formula (2.19) in section 2.

Let {AN } ∈ X#α(2, 1) be such that

AN = L(N , 1, 0, X, Y (0), Z(1)) (9.1)

for all N ∈ Z
+, where L is given by (2.19); X , Y (0), and Z (1) are given by (2.24).

Then, AN is real-symmetric for all N ∈ Z
+, and the sequence {AN } is an element

of the original repeat space Xr (2) with block-size 2. Fix a closed interval I on
the real line such that I contains all the eigenvalues of AN for all N ∈ Z

+.
Let eN : AC(I ) → R denote the sequence of bounded linear functionals

defined by

eN (ϕ) := Trϕ(AN ), (9.2)

N ∈ Z
+. [Note: Throughout this section, we let the domain of the sequence eN

be the set of all positive integers Z
+. We do not restrict the domain to the set

{2, 3, . . .}.]
Then, the Functional ALT implies that there exist linear functionals α, β ∈

AC(I )∗ such that

eN (ϕ) = α(ϕ)N + β(ϕ) + o(1) (9.3)

as N → ∞, for all ϕ ∈ AC(I ).
Define the sequence of linear functionals γ A

N : AC(I ) → R by

γ A
N (ϕ) = (eN (ϕ) − (α(ϕ)N + β(ϕ)))N , (9.4)

N ∈ Z
+. [Note that the Functional ALT implies that γ A

N ∈ AC(I )∗ for every
N ∈ Z

+ and that γ A
N (ϕ) = o(N ) as N → ∞, for all ϕ ∈ AC(I ).] For each

nonnegative real number ξ , let ϕξ ∈ AC(I ) denote the function defined by

ϕξ (x) = |x |ξ . (9.5)

Then, the real number sequence {eN (ϕ1)}, N ∈ {2, 3, . . .}, gives the sequence
of the total pi-electron energy (TPEE) of C2N H2N . The real number sequence
{eN (ϕ1−ϕ0)}, N ∈ {2, 3, . . .}, gives the sequence of the delocalization energy (DE)
of C2N H2N . [Note that eN (ϕ) = α(ϕ)N + β(ϕ) + o(1) as N → ∞, for all ϕ ∈
span {ϕξ : ξ � 0} ⊂ AC(I ).]

Since

eN (ϕ0) = 2N (9.6)
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for all N ∈ Z
+, we see that

α(ϕ0) = 2, (9.7)

β(ϕ0) = 0, (9.8)

hence that

γ A
N (ϕ0) = 0 (9.9)

for all N ∈ Z
+. By the linearity of the functional γ A

N , we then have

γ A
N (ϕ1 − ϕ0) = γ A

N (ϕ1) (9.10)

for all N ∈ Z
+.

Let g: R → R denote the function defined by

g(θ) := Trϕ1( f (θ)), (9.11)

where f denotes the FS map associated with the sequence {AN }, i.e.,

f (θ) = L̃(θ, 1, 0, X, Y (0), Z(1)), (9.12)

where L̃ is given by (2.23). [Note: The function g(θ) is expressed in terms of the
eigenvalues of the 2 × 2 matrix f (θ), as g(θ) = Trϕ1( f (θ)) = ∑2

j=1 |λ j ( f (θ))|,
where λ j ( f (θ)) denotes the jth eigenvalue of the Hermitian matrix f (θ) counted
with multiplicity, arranged in the increasing order.]

We formulate a problem, called ‘problem γ A’, which is analogous to prob-
lem γ in section 8 but is simpler than problem γ .

Problem γ A. Keep the notation and the assumptions as above. Describe the
behavior of the real number sequence {γ A

N (ϕ1)}, which is equal to {γ A
N (ϕ1 −ϕ0)}.

The following proposition provides an answer to this problem.

Proposition 9.1. The notation and the assumptions being as above, suppose that
ϕ is either ϕ1 or ϕ1 − ϕ0. Then, we have

γ A
2m+0(ϕ) → −4π B2(0/2) = −2π/3, (9.13)

γ A
2m+1(ϕ) → −4π B2(1/2) = π/3, (9.14)

as m → ∞, and

Os(γ A
N (ϕ)) := lim

N→∞ γ A
N (ϕ) − lim

N→∞
γ A

N (ϕ) = π, (9.15)

where B2 denotes the second Bernoulli function, B2(x) = x2 − x + 1/6.
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Proof. In view of equality (9.10), we may and do assume that ϕ = ϕ1. By using
theorem 7.4, we readily see that

g(θ) = 4

∣∣∣∣cos
θ

2

∣∣∣∣ (9.16)

for all θ ∈ R. Apply the Euler–Maclaurin formula that uses the Bernoulli func-
tions Bn(x) (cf. [37,38] and references therein) to the restriction of the function
g to the closed interval [−π, π ], so that we have for each j = 0 and 1,

γ A
2m+ j (ϕ1) → 2π

B2( j/2)

2!
∫ 2π

0
g(2)(θ) dθ (9.17)

as m → ∞. But, we have∫ 2π

0
g(2)(θ) dθ = D−g

(
2π

2

)
− D+g

(
2π

2

)
= −4, (9.18)

B2(0/2) = 1/6, (9.19)

B2(1/2) = −1/12. (9.20)

The conclusion follows.

The numerical computation of γ A
N (ϕ1) shows that the sequence γ A

N (ϕ1) begins to
oscillate immediately and the subsequences γ A

2m+0(ϕ1) and γ A
2m+1(ϕ1) begins to

converge rapidly as figure 3 shows.
The behavior of the sequence {γ A

N (ϕ1)} = {γ A
N (ϕ1 − ϕ0)} implies that

C2N H2N with N = 2m +1 are relatively more stable than C2N H2N with N = 2m,
although this relative stability decreases as N becomes larger. See figure 4, which
shows that the point PtN := (N , eN (ϕ1)) ∈ R

2 rapidly approaches the asymptotic
line α(ϕ1)N + β(ϕ1). Recall (9.7) and (9.8), and notice that in the plot of the
delocalization energy of C2N H2N , the point PtD

N := (N , eN (ϕ1 − ϕ0)) ∈ R
2 rap-

idly approaches its asymptotic line:

α(ϕ1 − ϕ0)N + β(ϕ1 − ϕ0) = (α(ϕ1) − 2)N + β(ϕ1). (9.21)

Proposition 9.1 and the plot in figure 3 provide a fresh insight into Hückel’s
(4n + 2) rule concerning the aromaticity of monocyclic polyenes.

The oscillation of γ A
N (ϕ1), or the oscillation of γ A

N (ϕ1 − ϕ0), is the positive
number π . This implies that the pi-electron energy band structure of polyacety-
lene (calculated via the Hückel scheme without bond alternation) has the zero-
band gap.
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Figure 3. The plot of the sequence gammaN := γ A
N (ϕ1) = γ A

N (ϕ1 − ϕ0) and the theoretically
obtained limits of the subsequences: limm→∞ γ A

2m+0(ϕ1) = −2π/3 and limm→∞ γ A
2m+1(ϕ1) = π/3.

The upper horizontal (dotted) line represents π/3 and the lower horizontal (dotted) line represents
−2π/3. The oscillation of the sequence γ A

N (ϕ1) is the distance between these two lines, which is π .

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

N

en
er

gy
N

Figure 4. The plot of the TPEE energyN := eN (ϕ1) of monocyclic polyene C2N H2N (N ∈
{2, 3, . . .}) and the asymptotic line of the energy. The stars ∗ represent the numerically calculated
eN (ϕ1) and the line to which the point PtN := (N , eN (ϕ1)) ∈ R

2 rapidly approaches is the asymp-
totic line α(ϕ1)N + β(ϕ1) which the Functional ALT predicts in a broader context.
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The detailed discussion of the application of the ALT along these lines shall
be published elsewhere.

10. Concluding remarks

In the present paper, we used the following two distinct but complementary
research modes (strategies):

(1) ‘global contextualization of molecular problems’ expounded in ref. [1]
entitled ‘Note on the repeat space theory – its development and com-
munication with Prof. Kenichi Fukui-’,

(2) ‘local analysis of prototypal concrete problems’ of nanotubes and mono-
cyclic polyenes.

We subsumed the nanotube problem under the operator-theoretic setting of the
RST, namely under the structure of the ∗-algebra of the repeat space Xr (q, 1).
Through this global contextualization, we obtained among other things:

(i) the analytic expressions for the spectra of nanotube[a, b, c, d] with clus-
ter size N ,

(ii) the analytic expressions for the energy band curves of nano-
tube[a, b, c, d],

where nanotube[a, b, c, d] denotes our sequential matrix representation of nano-
tube(a, b) with the complex variables c and d. Also through this global contex-
tualization, all the theoretical tools and theorems in papers [7,8] are now appli-
cable to nanotube[a, b, c, d] with cluster size N so that we can investigate the
additivity and reactivity quantities (such as the frontier electron density, super-
delocalizability) of nanotubes in a unifying manner.

Concerning (2): This research mode corresponds to sections 8 and 9 in
the present paper, although these sections partially utilize the global setting
of the RST. Sections 8 and 9 are, both from a mathematical and chemical
point of view, as important as the preceding sections. Note that the asymp-
totic linearity theorem (ALT) is used in conjunction with the notion of the
elect ron delocal i zat i on – the central concept of the frontier orbital theory
[7,8]. Also note that our answer to problem γ gives, in conjunction with the
ALT, a necessary and sufficient condition for the pi-electron band curves of
nanotube(a, b) to have the zero-band gap, which is an important criterion of
the metallic conductivity. The notion of the electron delocalization thus used
enriches our line of research a great deal and enhances the development of the
RST, which now uses the theory of algebraic and analytic curves, and resolution
of singularities [14,15].
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Appendix. Review of the generalized repeat space

There are several equivalent ways of defining the generalized repeat space
Xr (q, d) with a given size (q, d) ∈ Z

+ × Z
+. We shall recall below the definition

that uses the notion of the sum of subspaces of a linear space (cf. refs. [4,6,7]).
Fix (q, d) ∈ Z

+ × Z
+ and let X(q, d) denote the set of all matrix sequences

whose N th term MN is an arbitrary q N d × q N d complex matrix, N ∈ Z
+. This

set constitutes a ∗-algebra over the field C with term-wise addition, scalar mul-
tiplication, multiplication

{MN } + {M ′
N } = {MN + M ′

N }, (A.1)

k{MN } = {k MN }, (A.2)

{MN }{M ′
N } = {MN M ′

N }, (A.3)

and involution (·)∗: X(q, d) → X(q, d) defined by

{MN }∗ = {M∗
N }, (A.4)

where the ∗ on the right-hand side of (A.4) denotes the adjoint operation.
Let Pn

N denote the N d × N d matrix given by

Pn
N = Pn1

N ⊗ Pn2
N ⊗ . . . ⊗ Pnd

N , (A.5)

where n = (n1, n2, . . . , nd) ∈ Z
d , and ⊗ denotes the Kronecker product.

Let Sk
N denote the N d × N d matrix given by

Sk
N = Sk1

N ⊗ Sk2
N ⊗ . . . ⊗ Skd

N , (A.6)

where k = (k1, k2, . . . , kd) ∈ (Z+ ∪ {0})d .
Let Vk(q, d) with k = (k1, k2, . . . , kd) ∈ {0, 1}d denote the subset of X(q, d)

defined by

Vk(q, d) = {{MN } ∈ X(q, d) : ∃m, n ∈ Z
d , ∃Q ∈ Mq(C) such that

MN = (Pm
N Sk

N Pn
N ) ⊗ Q for all N � 0}. (A.7)

Let span Vk(q, d) with k = (k1, k2, . . . , kd) ∈ {0, 1}d denote the linear span
of Vk(q, d).

We define three fundamental linear subspaces
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Xr (q, d),Xα(q, d), and Xβ(q, d) of X(q, d) by

Xr (q, d) = ∑
k∈{0,1}d

span Vk(q, d), (A.8)

Xα(q, d) = span V0(q, d), (A.9)

where 0 = (0, 0, . . . , 0) ∈ {0, 1}d , (A.10)

Xβ(q, d) = ∑
k∈{0,1}d\{0}

span Vk(q, d). (A.11)

In (A.8) and (A.11), the � denotes the sum of subspaces in the obvious manner.
We call Xr (q, d),Xα(q, d),Xβ(q, d), respectively, the generalized repeat space,

generalized alpha space, and generalized beta space with size (q, d), and each element
of Xr (q, d),Xα(q, d),Xβ(q, d), respectively, a generalized repeat sequence, general-
ized alpha sequence, and generalized beta sequence with size (q, d).

The following is one of the most fundamental theorems in the repeat space
theory.

Theorem A.1. For all q, d ∈ Z
+,Xr (q, d) forms a ∗-algebra.

Proof. This was proved in ref. [6].

For the purpose of the present article, in which only the generalized repeat
space with size (q, 1) appears, set d = 1 in the definition of Vk(q, d) given by
(A.7) and observe that

Xα(q, 1) = spanV0(q, 1)

= span{{MN } ∈ X(q, 1) : ∃m ∈ Z, ∃Q ∈ Mq(C) such that

MN = Pm
N ⊗ Q for all N � 0}, (A.12)

Xβ(q, 1) = span V1(q, 1)

= span {{MN } ∈ X(q, 1) : ∃m, n ∈ Z, ∃Q ∈ Mq(C) such that

MN = (Pm
N SN Pn

N ) ⊗ Q for all N � 0}, (A.13)

and note that

Xr (q, 1) = Xα(q, 1) + Xβ(q, 1). (A.14)
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